
38 The Delphi Magazine Issue 61

Beating The System:
Easy Internet, Part 2
by Dave Jewell

In last month’s article on WinINet
programming, I introduced you

to the often overlooked WinINet
DLL, looked at basic issues such as
establishing an internet connec-
tion and then described a simple
WinINet-based program which
could be used to browse the con-
tents of an FTP site. This month,
we’ll take a look at some of the
other routines in WinINet, and
rewrite the code so as to end up
with a reusable component.

The Gentle Art
Of FTP File Fetching
But first, we need to tackle the
thorny issue of downloading a
specified file from our FTP server.
You’ll notice that I cunningly
avoided this topic last month, con-
centrating instead on directory
browsing. The fact is that, even
with WinINet, downloading a file
can be somewhat more compli-
cated than it ought to be. To begin
with, let’s look at the obvious (and
wrong) way to do it.

The simplest way of retrieving a
file from an FTP server with
WinINet is to use the FtpGetFile
routine, the function prototype for
which is shown in Listing 1. As
discussed last month, the first
parameter, hConnect, is a handle to
a valid FTP session and lpszRem-
oteFile is the name of the required
file on the remote server (this can
be an absolute file location or rela-
tive to the currently set directory).
lpszNewFile specifies where we
want to place the file on the local
machine and the fFailIfExists
parameter is used to indicate that
the function should fail if the
specified local file already exists.

My advice here would be to
explicitly check if the local file is
present yourself! After all, it’s not
exactly a lot of work to call
FileExists, and it’s better to be
safe than sorry. I wouldn’t want
you to think I don’t trust
Microsoft’s code, but...J

Next up, dwFlagsAndAttributes
specifies the required attributes of
the newly created local file,
whereas dwFlags determines
whether it’s a binary or ASCII trans-
fer and allows other flags pertain-
ing to the cache (not relevant to
us) to be specified. Finally,
dwContext allows an application-
supplied value to be passed, for
use by callback routines. Again,
this was discussed last month.

Once you’ve called FtpGetFile
and received a result of True, that’s
the end of the story: you’ve got the
file. But because this is a very high
level routine, everything happens
inside the call and there’s very
little opportunity to get in on the
act. For sure, you could pass
Internet_Flag_Async to the initial
InternetOpen call, thereby ensuring
that FtpGetFile is called
asynchronously, but how do you
then keep track of the progress of
the file transfer? As I discussed last
time, WinINet provides a generic
mechanism for implementing
callbacks via the InternetSet-
StatusCallback routine and it
would be nice if we could use this
mechanism to receive progress on
the state of a lengthy file transfer.
Unfortunately, such niceties didn’t
occur to the designer of WinINet
because file transfer progress info
isn’t on the menu as far as
callbacks are concerned.

As is usually the case with
Microsoft’s APIs, it’s really a case

of ‘if you want the job done prop-
erly, then do it yourself’. The
secret is to use the FtpOpenFile call
rather than FtpGetFile:

function FtpOpenFile(
hConnect: HINTERNET;
lpszFileName: PChar;
dwAccess: DWORD;
dwFlags: DWORD;
dwContext: DWORD): HINTERNET;
stdcall;

Once again, the first and second
parameters specify the FTP ses-
sion handle and the name of the file
that we’re after. The dwAccess
parameter can be set to either
GENERIC_READ or GENERIC_WRITE.
Write, do I hear you cry? Well, bear
in mind that FtpOpenFile does
exactly what it says, it simply
opens a file and gives us a handle
to it. It can be used prior to file
upload operations as well as down-
loads. Once we’ve got a handle to
the required file, we can then read
the file, a bit at a time, by using the
InternetReadFile call:

function InternetReadFile(
hFile: HINTERNET;
lpBuffer: Pointer;
dwNumberOfBytesToRead: DWORD;
var lpdwNumberOfBytesRead:
DWORD): BOOL; stdcall;

The first parameter to this routine
is hFile, the file handle we got from
the call to FtpOpenFile. This is fol-
lowed by a pointer to a buffer into
which the data is read. Finally, the
next parameter specifies the size
of the supplied buffer and the final,
var, parameter is used to indicate
the number of bytes actually read.
There’s a lot to say about the
InternetReadFile routine. To begin
with, astute readers will have
inferred from the name that it’s not
FTP-specific. The same routine is
also used for HTTP file transfers
and in conjunction with the
Gopher functionality contained
within WinINet. Essentially, it’s a
general purpose ‘chunk of data’
reader.

As I mentioned last month, I
reckon that the easiest approach
when working with WinINet is to
use synchronous calls which have

function FtpGetFile (hConnect: HINTERNET; lpszRemoteFile: PChar;
lpszNewFile: PChar; fFailIfExists: BOOL; dwFlagsAndAttributes: DWORD;
dwFlags: DWORD; dwContext: DWORD): BOOL stdcall;

➤ Listing 1

40 The Delphi Magazine Issue 61

been offloaded onto a background
thread. In other words, my overall
strategy when downloading a file
via FTP with WinINet is to establish
a network connection, open an FTP
session, call FtpOpenFile to get a
handle to the required file and then
(and only then) create a back-
ground thread which receives the
data from the remote server. The
thread basically has to sit in a loop
reading data from the server until
the end of the file is reached. Once
the file has been downloaded, then
the thread is destroyed.

To use InternetReadFile you
need a buffer which is big enough
to hold a reasonable amount of
data, say 4Kb. When used synchro-
nously, the routine won’t return
until that amount of data has been
read from the server. If no error
occurred, and lpdwNumberOfBytes-
Read is less than the supplied buffer
size, then you know that you’ve got
to the end of the file. Clearly, allo-
cating a very large buffer means
that you’ll only infrequently be
able to update status information,
progress bars, etc, so you may as
well have used FtpGetFile. On the
other hand, a very small buffer size
(say 256 bytes) will radically
increase the overhead involved in
the file transfer and slow down the
overall operation. I felt that 4Kb
was a reasonable compromise, and
this seems to agree with many
commercial applications, such as
FTP Voyager, which you can see
updating the ‘bytes received’
count in increments of 4,096.

Making Progress
This raises another issue: how do
you know how big the file is? If
you’ve used Internet Explorer to
download many files from the
internet, you’ll have seen that most
of the time IE knows how big the
remote file is and can therefore
indicate that you are (for example)

57% of the way through the down-
load. However, you’ll also have
noticed that there are occasions
when IE isn’t able to determine the
size of the remote file, and it simply
reports ‘Unknown file size’ and
contents itself with displaying the
number of bytes that have been
downloaded so far. This is a pretty
common scenario when perform-
ing FTP transfers: you can’t guaran-
tee that the other end of the
connection knows exactly how
many bytes are going to be trans-
ferred and you need to cater for
this in your progress dialog. If you
don’t know the overall file size,
then don’t display a progress bar,
because you will profoundly irri-
tate your users when the bar gets
to the end of the track and then
starts over again from scratch!
(I’ve seen applications that do
this!).

The simplest way of determining
the size of the remote file is
through a call to the FtpFind-
FirstFile routine which we looked
at last time. As you’ll remember,
this fills in a TWin32FindData struc-
ture that gives us, amongst other

things, the size of the file. If the call
to TfpFindFirstFile fails, then we
just make do as best we can.

Putting all this together, I came
up with the reusable class,
TFTPFileReader, shown in Listing 2.
This isn’t a component in the
normal sense; as you can see, it
derives directly from Tobject.
Think of it more as a drop-in
‘helper’ class that’s intended for
incorporation into a larger project
and reused from there. For maxi-
mum flexibility (and, admittedly,
to make life easier for myself) I
wrote it in such a way that the onus
is on the host application to estab-
lish a connection to the internet. A
handle to this connection, of type
HINTERNET, must be established as
discussed last month and passed
to the file reader class via the
NetConnection property. At the
same time, the host application
needs to fill in the SourceFileName,
DestFileName and ServerName fields
so that the file reader knows what
file’s being downloaded, what it
should be called on the local
machine and where to download it
from, respectively.

unit FTPReader;
interface
uses Windows, WinINet, SysUtils, Classes, Dialogs;
const
BufSize = $1000;

type
TFTPFileReader = class;
TFTPFileReaderThread = class (TThread)
private

Owner: TFTPFileReader;
procedure DoProgress;

public
procedure Execute; override;

end;
TFTPFileReader = class (TObject)
private

{ CONTINUED ON FACING PAGE... }

➤ Listing 2

➤ Figure 1: You can use the WinINet FTP functionality as the basis of a
powerful FTP browser program such as FTP Voyager from Deerfield
(visit www.ftpvoyager.com for more details).

September 2000 The Delphi Magazine 41

{ ...CONTINUED FROM FACING PAGE }
fNetConnection: HInternet;
fFTPSession: HInternet;
fFileHandle: HInternet;
fSourceFileName: String;
fServerName: String;
fDestStream: TFileStream;
fDestFileName: String;
fUserName: String;
fPassword: String;
fFileSize: Integer;
fOwnFTPSession: Boolean;
fServerPort: Integer;
fTotalBytesRead: Integer;
fOnProgress: TNotifyEvent;
fCompletionString: String;
fOnCompletetion: TNotifyEvent;
fThread: TFTPFileReaderThread;
fBuffer: array [0..BufSize - 1] of Char;
procedure Cleanup (Fail: Boolean);
procedure Panic (const Message: String);
function StartSession: Boolean;
procedure ThreadTerminated (Sender: TObject);

public
destructor Destroy; override;
procedure Execute;
procedure CancelTransfer;
property FileSize: Integer read fFileSize;
property TotalBytesRead: Integer read fTotalBytesRead;
property CompletionString: String
read fCompletionString;

property NetConnection: HInternet read fNetConnection
write fNetConnection;

property FTPSession: HInternet read fFTPSession
write fFTPSession;

property SourceFileName: String read fSourceFileName
write fSourceFileName;

property DestFileName: String read fDestFileName
write fDestFileName;

property ServerName: String read fServerName
write fServerName;

property ServerPort: Integer read fServerPort
write fServerPort;

property OnProgress: TNotifyEvent read fOnProgress
write fOnProgress;

property OnCompletion: TNotifyEvent read fOnCompletetion
write fOnCompletetion;

end;
implementation
destructor TFTPFileReader.Destroy;
begin
Cleanup (False);
Inherited Destroy;

end;
procedure TFTPFileReader.Cleanup (Fail: Boolean);
begin
// Close the destination file stream if open;
fDestStream.Free;
fDestStream := Nil;
if Fail then
DeleteFile (fDestFileName);

// Close the source file if its open
if fFileHandle <> Nil then begin
InternetCloseHandle (fFileHandle);
fFileHandle := Nil;

end;
// Tear down the FTP session, if any
if fOwnFTPSession and (fFTPSession <> Nil) then begin
InternetCloseHandle (fFTPSession);
fFTPSession := Nil;
fOwnFTPSession := False;

end;
end;
procedure TFTPFileReader.Panic (const Message: String);
begin
Cleanup (True);
raise Exception.Create (ClassName + ': ' + Message);

end;
procedure TFTPFileReader.CancelTransfer;
begin
Cleanup (True);

end;
function TFTPFileReader.StartSession: Boolean;
var
FindHandle: HInternet;
FindData: TWin32FindData;
szUserName, szPassword: PChar;

begin
// Do we need to create an FTP session ?
if fFTPSession = Nil then begin
if fNetConnection = Nil then
Panic ('No Network connection specified');

if (fUserName = '') or (fPassword = '') then begin
szUserName := Nil;
szPassword := Nil;

end else begin
szUserName := @fUserName [1];
szPassword := @fPassword [1];

end;
fFTPSession := InternetConnect(fNetConnection,
PChar(fServerName), fServerPort, szUserName,

szPassword, Internet_Service_FTP, 0, 0);
if fFTPSession = Nil then
Panic ('Can''t create an FTP session');

fOwnFTPSession := True;
end;
// We've got an FTP session, how big is the file?
FindHandle := FtpFindFirstFile(fFTPSession,
PChar(fSourceFileName), FindData, 0, 0);

if FindHandle <> Nil then begin
fFileSize := FindData.nFileSizeLow;
InternetCloseHandle (FindHandle);

end;
// Now, try and open the file for transfer
fFileHandle := FtpOpenFile (fFTPSession,
PChar(fSourceFileName), Generic_Read,
Ftp_Transfer_Type_Binary, 0);

Result := fFileHandle <> Nil;
end;
procedure TFTPFileReader.Execute;
begin
// Perform all needed sanity checks....
if fServerName = '' then
Panic ('No server name specified');

if fSourceFileName = '' then
Panic ('No source filename specified');

if fDestFileName = '' then
Panic ('No destination filename specified');

if fServerPort = 0 then
fServerPort := Internet_Default_FTP_Port;

// So far so good, now create an FTP session
if not StartSession then
Panic ('Requested file not found') else begin
// Time to create the background thread, create the
// source file and start rolling
try
fDestStream :=
TFileStream.Create (fDestFileName, fmCreate);

except
Panic ('Can''t create destination file');

end;
fThread := TFTPFileReaderThread.Create (True);
fThread.FreeOnTerminate := True;
fThread.OnTerminate := ThreadTerminated;
fThread.Owner := Self;
fThread.Resume;

end;
end;
procedure TFTPFileReader.ThreadTerminated (Sender: TObject);
begin
if Assigned(OnCompletion) then
OnCompletion(Self);

end;
// TFTPFileReaderThread
procedure TFTPFileReaderThread.DoProgress;
begin
if Assigned(Owner.OnProgress) then
Owner.OnProgress(Owner);

end;
procedure TFTPFileReaderThread.Execute;
var
BytesRead: DWord;
ErrNum, BuffSize: DWord;
szBuff: array [0..1024] of Char;

begin
while not Terminated do begin
BytesRead := 0;
if InternetReadFile (Owner.fFileHandle, @Owner.fBuffer,
sizeof (Owner.fBuffer), BytesRead) then begin
// If got more data, write it to destination file
if (BytesRead > 0) and
(BytesRead <= sizeof(Owner.fBuffer)) then begin
Owner.fDestStream.Write (Owner.fBuffer, BytesRead);
// Update progress info
Owner.fTotalBytesRead :=
Owner.fTotalBytesRead + Integer(BytesRead);

Synchronize(DoProgress);
end;
// If we didn't get any data, but InternetReadFile
// returned True, then it's EOF. Just terminate the
// thread by leaving Execute.
if BytesRead = 0 then begin
Owner.fCompletionString := 'OK';
Exit;

end;
end else begin
// It looks bad. InternetReadFile has returned False
// which basically means its screwed up. Get the last
// response string from the server and pass it back.
BuffSize := sizeof (szBuff);
Owner.fCompletionString := 'Unknown Error';
if InternetGetLastResponseInfo(ErrNum, szBuff,
BuffSize) then
if (BuffSize > 0) and (szBuff [0] <> #0) then
Owner.fCompletionString := szBuff;

// We're out'a here
Exit;

end;
end;

end;
end.

42 The Delphi Magazine Issue 61

You don’t need to set up the
ServerPort property because if you
leave it set to zero then it’ll auto-
matically be initialised to 21, the
default port number for FTP con-
nections. Thus, having set up the
other properties previously men-
tioned, you can just call the Execute
method of the file reader class and
let it get on with it. Note that the
Execute method is essentially asyn-
chronous: it establishes an FTP
connection with the server and
then returns more or less immedi-
ately while the FTP transfer contin-
ues in the background. This is done
by creating a separate thread to
handle the download, as we’ll see
shortly.

In addition to the above com-
ments, you will see that the
TFTPFileReader class also has an
extra property, FTPSession. If this is
left as zero (the default), then the
file reader will create an FTP ses-
sion of its own. However, by plac-
ing the handle of an existing FTP
session into this property, the file
reader can be made to ‘inherit’ an
FTP session from the host applica-
tion. Why did I do things like this?
Stay with me and I’ll explain all.

At any point during the down-
load, if the user gets bored (or
whatever), the host application is
free to call the CancelTransfer
method, which does exactly what
you’d expect it to do. Of course,
this raises the question of how the
host app is supposed to know how
the file transfer is progressing and
when it has completed. In order to
do this, I’ve added a few other
goodies to the class. To begin with,
you’ll see that there are FileSize
and TotalBytesRead properties
which indicate the total size of the

file and the number of bytes that
have been downloaded, respec-
tively. As I’ve already pointed out,
it might not be possible to retrieve
the file size from the server, in
which case FileSize will report
zero. I also resisted the temptation
to start calculating ‘percentage
done’, passing references to
TProgressBar controls and similar
stuff. Good software design always
decouples the ‘grunt code’ from
the user interface. Although I don’t
always remember to put this prin-
ciple into practice, I have done so
here! In theory, the host
application could create multiple
instances of TFTPFileReader, pre-
senting a fancy user interface
which shows how each file
download is progressing. None of
this is relevant to the file reader
itself.

Of course, this doesn’t mean that
the host app should have to contin-
ually poll the file reader object in
order to determine the current
state of play. Instead, I’ve added a
couple of event handlers to take
care of things. Firstly, there’s an
OnProgress event which is triggered
whenever fresh data is received
from the remote machine. The fre-
quency with which this event gets
triggered depends entirely on the
value you assign to BufSize since it
only fires when another ‘buffer’s-
worth’ of data has arrived. With a
56K modem, this happens just
under twice per second. If you’ve
got an ADSL connection then firstly
I hate you with a passion [Steady,
Dave, I warned you about those
death threats to readers before... Ed]
and secondly you might want to
implement a somewhat larger
buffer size.

You’ll also notice that the file
reader class has an OnCompletion
event. Unsurprisingly, this gets

triggered when the file transfer has
completed. Inside your OnComp-
letion event handler, you should
check the value of the read-only
CompletionString property. This
will be set to OK if the file transfer
completed successfully, and some
other error message if things went
pear-shaped for whatever reason.

How It Works
With that as an introduction, let’s
roll up our sleeves and see how
TFTPFileReader works its magic.

Having set up the various prop-
erties as mentioned earlier, noth-
ing happens until we call the
Execute method: there isn’t even a
custom constructor for this class.
Once Execute is invoked, we per-
form a few simple sanity checks to
ensure the essential properties
have been set up, calling the Panic
helper routine if things don’t look
good. As mentioned earlier, the
FTP server port number gets
initialised to Internet_Default_
FTP_Port if no custom port number
has been specified.

Next, the StartSession method
gets called. If no FTP session
handle was supplied, then we
create a new FTP session inside
this method. As you’ll see if you
read the MSDN documentation,
the InternetConnect routine
expects the FTP username and
password to be passed as two
PChar arguments. Although an
empty String in 32-bit Delphi is
internally represented as a Nil
pointer, it unfortunately gets
transmogrified into a non-Nil
pointer if you cast it to a PChar! This
is why the code here is more ver-
bose than it might otherwise be.

Table 1 has been taken from
Microsoft’s documentation and
‘Pascalised’. As you can see, it
shows the various permutations of
username and password that can
be passed to the InternetConnect
routine, and how they translate
into what’s actually sent to the
server. I felt that this was need-
lessly complicated, so I just wrote
the code in such a way as to elimi-
nate the two middle conditions,
one of which isn’t allowed anyhow!
Thus, leave both properties as
empty strings for anonymous FTP,

Username Password Name Sent Password Sent

Nil Nil ‘anonymous’ User’s email address

Not Nil Nil Username Empty string

Nil Not Nil ERROR ERROR

Not Nil Not Nil Username Password

➤ Table 1:
Usernames and passwords.

September 2000 The Delphi Magazine 43

and set them both for servers that
require a specific username and
password.

Once we’ve established an FTP
session with the server, the next
job is to figure out, if possible, the
size of the file we’re about to
retrieve. This is done by passing
our FTP session handle to
FtpFindFirstFile. If this returns a
non-nil value, then we retrieve the
file size information from the
TWin32FindData structure (well, the
first 32 bits of it, anyway!) and use
this to set the FileSize property.

Time for an important note. In
last month’s article, I complained
that FtpFindFirstFile could only
be used once during a specific FTP
session. In fact, on closer reading,
this turned out to be a misunder-
standing on my part. What it says is
that you can’t have more than one
‘find file’ enumeration in force at
any one time. To put this another
way, once you’ve called FtpFind-
FirstFile on a particular FTP ses-
sion, you won’t be able to do so
again until you’ve closed the exist-
ing handle through a correspond-
ing call to InternetCloseHandle. In
this context, you can think of clos-
ing a ‘find file’ handle as being anal-
ogous to calling FindClose after
using FindFirst/FindNext. How-
ever, whereas you can nest
FindFirst/FindNext calls, you can’t
do the same with the FTP routines.
This is the reason I wrote the file
reader class in such a way as to
optionally share FTP sessions,
since it now makes a lot more
sense for it to be able to do so.

The final job of the StartSession
routine is to call FtpOpenFile,
retrieving a handle to the remote
file. Notice that I always open the
file in binary mode, ie a byte-for-
byte copy. This will obviously
work for binary and text files.

Back in the Execute method, a
TfileStream object is created for
writing the destination file, and
then comes the fun part: the Exe-
cute method finishes by creating
the background thread which does
the work of driving the file transfer.
Rather than copying umpteen vari-
ables from the file reader into the
thread object, I just pass a pointer
to the thread’s ‘owner’ and then

use this field to get at required
information from inside the thread.
The thread is created in a sus-
pended state, but as soon as the
Owner field and OnTerminate handler
have been set up, Resume is called,
which, as you’ll know if you’ve
done any thread programming
before, causes the thread’s Execute
method to start executing.

Inside the thread’s Execute
method (not to be confused with
the Execute method of the
TFTPFileReader class!) we do what
every well-behaved thread does
and that’s to sit in a loop checking
the state of the Terminated prop-
erty. If this gets set to True, then it
means that the thread should shut
down. Inside the loop, we call
InternetReadFile, trying to read
the remote file data. Each time that
this routine returns success, we
write the newly retrieved data to
the destination file stream and
update the count of the total
number of bytes that have been
retrieved. Finally, the thread’s
DoProgress method is called, invok-
ing the file reader’s OnProgress
event handler if one has been
assigned. Notice that this has to be
done via a Synchronize call so that

the event handler is executed
within the context of the applica-
tion’s primary thread. As seasoned
Delphi developers know to their
cost, the VCL is not re-entrant!

If the InternetReadFile routine
returned success but didn’t actu-
ally give us any data, this indicates
that the file transfer has com-
pleted. In this case, we set the com-
pletion string to OK as mentioned
earlier and exit the routine. This
terminates the thread, thereby
triggering the thread’s OnTerminate
event which calls the file reader’s
ThreadTerminated method. Inside
this method, we call the house-
keeping Cleanup routine which
closes the destination file stream
and tears down the FTP session.

Phew! If the unthinkable hap-
pens and InternetReadFile reports
an error, then we use Internet-
GetLastResponseInfo to retrieve a
(hopefully!) human readable error
string, place it in the
CompletionString property and ter-
minate the Execute loop as before.

Of course, the code I’ve pre-
sented here is specific to FTP file
downloads, but not very. While
writing this stuff I realised that it’d
be quite easy to create a generic

➤ Figure 2: My browser doesn't look vastly different from last month,
except that it's lost the Get File List button, which was essentially
redundant, and sprouted a new Get File button for initiating an FTP
transfer.

44 The Delphi Magazine Issue 61

file download program which uses
virtual methods to open a session,
stop a session and ‘drive’ the
actual file transfer. In this way, you
could write an abstract file transfer
class, inheriting a different descen-
dant from this class according to
whether you’re doing an FTP
download or using the HTTP func-
tionality, for example. This is left as
an exercise for you, dear reader,
but hopefully you get the idea.

The FTP Browser Revisited
As mentioned elsewhere, I eventu-
ally sussed the fact that you can
perform multiple file enumerations
within one FTP session! This being
the case, I’ve modified last month’s
testbed code to create a single FTP
session when it starts running, and
to destroy the FTP session only
when the application terminates.
This simplifies the code and makes
things run more quickly because
we’re not forever having to create a
new session.

I’ve also added the ability to
download individual files from the
server by double-clicking a file, or
by selecting a file and then press-
ing the Get File button (see Figure
2). During a download, the status
panel at the bottom of the window
reflects the number of bytes that
have been transferred and, if avail-
able, the total size of the file. I had
originally intended to implement a
fancy download dialog, complete
with cancel button, progress bar
and animated AVI, but alas, time

procedure TForm1.FileListSelectItem (Sender: TObject; Item:
TListItem; Selected: Boolean);

begin
if Selected then
Download.Enabled := Item.Data = Nil

else
Download.Enabled := False;

end;
procedure TForm1.FileTransferComplete (Sender: TObject);
begin
Status.Caption := 'File Transfer Complete: Result = ' +
FileReader.CompletionString;

FileReader.Free; FileReader := Nil;
Screen.Cursor := crDefault;
Enabled := True;
MessageBeep (0);

end;
procedure TForm1.FileTransferProgress (Sender: TObject);
begin
Status.Caption := 'Bytes transferred: ' +
IntToStr(FileReader.TotalBytesRead);

if FileReader.FileSize <> 0 then
Status.Caption := Status.Caption + ' out of ' +
IntToStr(FileReader.FileSize) + ' bytes';

end;
procedure TForm1.DownloadClick(Sender: TObject);

var
Item: TListItem;
DirName: String;

begin
Item := FileList.Selected;
if (Item <> Nil) and (Item.Data = Nil) then begin
DirName := Copy(CurrentDir.Caption, 21, MaxInt);
if MessageDlg('Download ' + Item.Caption +
' from directory "' + DirName + '" ?', mtConfirmation,
[mbYes, mbNo], 0) = mrYes then begin
SaveDialog.FileName := Item.Caption;
if SaveDialog.Execute then begin
Screen.Cursor := crHourGlass;
Enabled := False;
FileReader := TFTPFileReader.Create;
FileReader.SourceFileName := Item.Caption;
FileReader.DestFileName := SaveDialog.FileName;
FileReader.ServerName := 'ftp.microsoft.com';
FileReader.NetConnection := hSession;
FileReader.FTPSession := hFTP;
FileReader.OnCompletion := FileTransferComplete;
FileReader.OnProgress := FileTransferProgress;
FileReader.Execute;

end;
end;

end;
end;

➤ Listing 3

was against me as usual. If you do
want to implement such a progress
dialog, bear in mind that the stan-
dard AVI animations implemented
via the CommonAVI property of the
TAnimate control don’t include
what I’ll refer to as the ‘web copy’
animation shown in Figure 3. Fortu-
nately, there’s an easy way around
this, because I’ve used a resource
editor to extract the necessary .AVI
file for you. It’s included with this
month’s files as WEBCOPY.AVI.

If you want to use this animation
in a project of your own, just
embed the animation into a .RES
file as a custom resource of type
AVI. You can then load the anima-
tion into the TAnimate control at
runtime by setting the controls
ResHandle property to HInstance,
set its ResID property to whatever
numeric ID you’ve assigned to the
resource, and you can then set the
Active property in the usual way to
start the animation.

Listing 3 shows the main addi-
tions which I made to last month’s
FTP browser code in order to
integrate it with the reusable FTP

file reader class. Briefly, you’ll see
that I’ve added a OnListSelectItem
handler which takes care of
ensuring that the file download
button is only enabled if a file is
currently selected. The FileTran-
sferComplete method is invoked
when the FTP file reader triggers
an OnCompletion event. It takes care
of updating the status text label to
show the success (or failure) of the
file transfer. It also destroys the file
reader itself and emits a beep to
notify the user that the file transfer
is complete. Similarly, the File-
TransferProgress method is
invoked whenever more data is
received from the remote end. As
mentioned already, it simply
updates the status label to indicate
how much data has been received
thus far.

The real meat of Listing 3 is the
DownloadClick routine which
initiates a file transfer. After check-
ing that we’re dealing with a file,
and confirming that the user does
want to perform a download, the
code then obtains a destination
filename in the time-honoured

➤ Figure 3: If you want
to implement a fancy
file download
progress dialog such
as the one built into
Internet Explorer,
take a look at the
WEBCOPY.AVI file
included with this
month's project files.

September 2000 The Delphi Magazine 45

manner and then creates a
TFTPFileReader object to manage
the transfer. The various proper-
ties are set up as previously
described, and the OnProgress and
OnCompletion event hooks are
initialised. It’s then just a case of
calling the Execute method and
Bob’s your uncle.

Conclusions
I’ll admit that this FTP browser/
download program would win few
prizes for user friendliness. I’ve
included no facility for cancelling
the transfer, though that would be
easy to incorporate, but more
importantly I’ve neatly side-
stepped the issue of multiple file
transfers by disabling the main
form during a transfer, thus pre-
venting you from downloading
anything else! Obviously, you
wouldn’t do that in a real program,
would you?

As it stands, the TFTPFileReader
class could certainly be
instantiated multiple times, but if
you go down this route then you’ll
need to bear in mind Microsoft’s

dire warnings about only allowing
one active file transfer within a
single FTP session. What this really
means is that if you want to down-
load more than one file at once,
then you’ll need to open multiple
FTP sessions, one for each file. I
haven’t experimented with this
but, in theory, if you leave the
FTPSession property of the file
reader object set to zero, then it’ll
open a new FTP session just for
that file transfer. Now you can see
why I allowed for the class to
optionally ‘inherit’ an FTP session
handle from the host program.

I hope that this month’s and last
month’s articles have given you a

feel for the FTP functionality con-
tained within WinINet. I’ll revisit
WinINet soon and look at what’s
available on the HTTP front.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
TechEditor@itecuk.com

	The Gentle Art Of FTP File Fetching
	Making Progress
	How It Works
	The FTP Browser Revisited
	Conclusions

